On Sun, 19 Nov 2023 12:24:30 +0100, Rosario19
wrote:
>On Sun, 19 Nov 2023 07:17:48 +0100, Rosario19
>wrote:
>
>>Don't you think I don't like APL, or I think I have right...
>>for me ," is bugged
>>
>> ({leftshoe},1),{dieresis}1 2
>>+2------------+
>>¦+2---+ +2---+¦
>>¦¦ 1 1¦ ¦ 1 2¦¦
>>¦+~---+ +~---+2
>>+?------------+
>> 1,{dieresis}1 2
>>+2------------+
>>¦+2---+ +2---+¦
>>¦¦ 1 1¦ ¦ 1 2¦¦
>>¦+~---+ +~---+2
>>+?------------+
>> ({leftshoe},1)
>>+----+
>>¦+1-+¦
>>¦¦ 1¦¦
>>¦+~-+2
>>+?---+
>> 1
>>1
>>~
>>
>>Why the same result when
>>This object
>>({leftshoe},1)
>>has different type of this
>>1
>>?
>>
>>The same
>>,{dieresis} (1 1)(2 2)(3 3)
>>+3-------------------+
>>¦+2---+ +2---+ +2---+¦
>>¦¦ 1 1¦ ¦ 2 2¦ ¦ 3 3¦¦
>>¦+~---+ +~---+ +~---+2
>>+?-------------------+
>>,{dieresis} 1 2 3 4
>>+4------------------+
>>¦+1-+ +1-+ +1-+ +1-+¦
>>¦¦ 1¦ ¦ 2¦ ¦ 3¦ ¦ 4¦¦
>>¦+~-+ +~-+ +~-+ +~-+2
>>+?------------------+
>>
>>why in this last, each element is boxed, but in the other above, not?
>>
>>One good question for resolve would be to find the recursive answer in
>>APL of this codegolf question
>>
>>
>>https://codegolf.stackexchange.com/questions/34491/list-the-combinations-of-elements-in-a-set
>>
>>
>>I think for base of induction one function q solution has to return as
>> 1 q 1 2 3 4
>>+4------------------+
>>¦+1-+ +1-+ +1-+ +1-+¦
>>¦¦ 1¦ ¦ 2¦ ¦ 3¦ ¦ 4¦¦
>>¦+~-+ +~-+ +~-+ +~-+2
>>+?------------------+
>>and as
>> 4 q 1 2 3 4
>>+----------+
>>¦+4-------+¦
>>¦¦ 1 2 3 4¦¦
>>¦+~-------+2
>>+?---------+
>>
>>so all solution make wrong the base of induction for me are wrong, in
>>count the codegolf answers in the site.
>>
>>This hould be one solution
>>
>>q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{diamond}({alpha}{del}a),({leftbrace}w[1],{omega}{rightbrace}{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}){rightbrace}
>
>this seems shorter
>
>q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}{diamond}({alpha}{del}a),w[1]{jot},{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}{rightbrace}
>
>it seems
> {jot},{dieresis}
>can be ok
>because the answer of these below are differents
>({leftshoe},1){jot},{dieresis}1 2
>+2----------------+
>¦+2-----+ +2-----+¦
>¦¦+1-+ ¦ ¦+1-+ ¦¦
>¦¦¦ 1¦ 1¦ ¦¦ 1¦ 2¦¦
>¦¦+~-+ ~2 ¦+~-+ ~2¦
>¦+?-----+ +?-----+3
>+?----------------+
>1{jot},{dieresis}1 2
>+2------------+
>¦+2---+ +2---+¦
>¦¦ 1 1¦ ¦ 1 2¦¦
>¦+~---+ +~---+2
>+?------------+
>
>so it seems ok for the q function
>Someone can make shorter this?
>
>{leftbrace}1{rightcaretunderbar}{equalunderbar}w:,{dieresis}w{diamond}{leftshoe}{dieresis}w{rightbrace}
>
>But increase the numeber of fuction for me is not ok
Above it seems ,{dieresis}{leftshoe}{dieresis}
make all the input output as i searched, and so we have the APL 46
char solution
q{leftarrow}{leftbrace}{alpha}{rightcaretunderbar}{notequalunderbar}w{leftarrow}{omega}:{leftshoe}{omega}{diamond}{alpha}{leftcaretunderbar}1:,{dieresis}{leftshoe}{dieresis}{omega}{diamond}({alpha}{del}a),w[1]{jot},{dieresis}({alpha}-1){del}a{leftarrow}1{downarrow}{omega}{rightbrace}
,{dieresis}{leftshoe}{dieresis}
it seems apply to
(1 1)(2 2)(3 3)
or to
1 2 3 4
make box elements of array elements
in both cases
|
|